Probability Theory Review: 2-2

- Conditional Independence
- How to derive Bayes Theorem based
- Law of Total Probability
- Bayes Theorem in Practice

Working with data in python

= Refer to python notebook

Random Variables, Revisited

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

X is a *continuous random variable* if it can take on an infinite number of values between any two given values. X is a *discrete random variable* if it takes only a countable number of values.

Random Variables, Revisited

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

 $\mathbf{X}(\boldsymbol{\omega}) = \boldsymbol{\omega}$

Example: Ω = inches of snowfall = [0, ∞) $\subseteq \mathbb{R}$

X is a *continuous random variable* if it can take on an infinite number of values between any two given values.

X amount of inches in a snowstorm

$$\mathbf{P}(X = i) := 0, \text{ for all } i \in \mathbf{\Omega}$$

(probability of receiving <u>exactly</u> i inches of snowfall is zero)

What is the probability we receive (at least) a inches? $P(X \ge a) := P(\{\omega : X(\omega) \ge a\})$

What is the probability we receive between a and b inches? $P(a \le X \le b) := P(\{ \omega : a \le X(\omega) \ge b \})$

Random Variables, Revisited

X: A mapping from Ω to \mathbb{R} that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) $\subseteq \mathbb{R}$

How to model?

X is a *continuous random variable* if it can take on an infinite number of values between any two given values.

X is a continuous random variable if there exists a function *fx* such that:

$$f_{x}(x) \ge 0, \text{ for all } x,$$

$$\int_{-\inf}^{\inf} f_{x}(x) dx = 1, \text{ and}$$

$$P(a < X < b) = \int_{a}^{b} f_{x}(x) dx$$

69

71